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Abstract We argue that the Einstein gravity theory can be reformulated in almost Kähler
(nonsymmetric) variables with effective symplectic form and compatible linear connection
uniquely defined by a (pseudo) Riemannian metric. A class of nonsymmetric theories of
gravitation on manifolds enabled with nonholonomic distributions is considered. We prove
that, for certain types of nonholonomic constraints, there are modelled effective Lagrangians
which do not develop instabilities. It is also elaborated a linearization formalism for anholo-
nomic noncommutative gravity theories models and analyzed the stability of stationary el-
lipsoidal solutions defining some nonholonomic and/or nonsymmetric deformations of the
Schwarzschild metric. We show how to construct nonholonomic distributions which remove
instabilities in nonsymmetric gravity theories. It is concluded that instabilities do not consist
a general feature of theories of gravity with nonsymmetric metrics but a particular property
of some models and/or unconstrained solutions.

Keywords Gravity and symplectic variables · Nonsymmetric metrics · Nonholonomic
manifolds · Nonlinear connections · Stability

1 Introduction

In this article, we re-address the issue of nonsymmetric gravity theory following three key
ideas: 1) the general relativity theory can be written equivalently in terms of certain non-
symmetric variables; 2) nonsymmetric contributions to metrics and connections may be
generated in quasi-classical limits of quantum gravity and nonholonomic and/or noncom-
mutative Ricci flow theory; 3) physically valuable solutions and their generalizations with
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nonsymmetric/noncommutative/nonholonomic variables can be stabilized by corresponding
classes of nonholonomic constraints on gravitational field and (geometric) evolution equa-
tions. This paper belongs to a series of three our works on gravity and spaces enabled with
general symmetric nonsymmetric components metrics and related nonlinear and linear con-
nection structures, see also partner articles [1, 2]. Our goal is to consider some knew appli-
cations in gravity physics and define the conditions when such gravitational “nonsymetric”
interactions can be modelled on Einstein spaces.

In our recent papers on quantum gravity [3, 4], we worked with almost Kähler (canon-
ical almost symplectic) variables, see a review of results and applications of the geometric
formalism for constructing exact solutions in gravity [5] and modelling locally anisotropic
interactions in standard theories of physics [6]. In this article, we shall construct such sym-
plectic (nonsymmetric) nonholonomic variables for classical Einstein gravity and possible
generalizations to nonsymmetric gravity theories. The almost symplectic/Kähler connection
in gravity is similar to the Cartan connection in Finsler–Lagrange geometry [7–14], but we
emphasize that in this article we shall work only with geometric structures defined on non-
holonomic (pseudo) Riemannian manifolds.1

From a formal point of view, the Cartan’s almost symplectic connection contains non-
trivial torsion components induced by the anholonomy coefficients.2 Such a nonholonomi-
cally induced torsion is not similar to torsions from the Einstein–Cartan and/or string/gauge
gravity theories, where certain additional field equations (to the Einstein equations) are con-
sidered for torsion fields.

For the almost Kähler representation of general relativity, the gravitational symplectic
form is anti-symmetric, θμν = −θνμ, and play the role of “anti-symmetric” metric. We can
consider additional “nonsymmetric” metric contributions from “de-quantization” procedure
in deformation quantization of gravity, or (in a more straightforward form) from the theory
of nonholonomic and/or noncommutative Ricci flows, see [2, 15, 16]. Such geometric quan-
tum constructions and evolution models put in a new fashion the problem of gravity with
nonsymmetric variables. There is already a long time history, beginning with A. Einstein
[17, 18] and L.P. Eisenhart [19, 20], when the so-called nonsymmetric gravity theories have
been elaborated in different modifications by J. Moffat and co-authors [21–27], see also a
recent paper [28]. Here we note that a more general class of geometries with nonsymmet-
ric metrics and nonlinear and linear connections, generalizing the concept of Lagrange and
Finsler spaces was investigated in [29, 30].

A series of works by T. Janssen and T. Prokopec [31–33] is devoted to the so-called
“problem of instabilities” in nonsymmetric gravity theories. The authors agreed that one
can be elaborated such models with nonzero mass term for the nonsymmetric part of metric
(treated as an absolutely symmetric torsion induced by an effective B-field like in string
gravity, but in four dimensions). That solved the problems formally created by absence of
gauge invariance found by Damour, Deser and McCarthy [34], see explicit constructions
and detailed discussions in [23, 35]. It was also emphasized that, as a matter of principle, the

1A pair (V, N ), where V is a manifold and N is a nonintegrable distribution on V, is called a nonholonomic
manifold; we note that in our works we use left “up” and “low” symbols as formal labels for certain geometric
objects and that the spacetime signature may be encoded into formal frame (vielbein) coefficients, some of
them being proportional to the imaginary unity i, when i2 = −1.
2In mathematical and physical literature, there are used also some other equivalent terms like anholonomic,
or non-integrable, restrictions/constraints; we emphasize that in classical and quantum physics the field and
evolution equations play a fundamental role but together with certain types of constraints and broken sym-
metries.
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Clayton’s effect [36] (when, for a general relativity background, a small B-field for the non-
symmetric part quickly grows) may be stabilized by solutions with evolving backgrounds
[37] and/or introducing an extra Lagrange multiplier when the unstable modes dynamically
vanish [38].

Nevertheless, the general conclusion following from works [31–33] is that instabilities in
nonsymmetric gravity theory should not be seen as a relict of the linearized theory because
certain nonlinearized nonsymmetric gravity models with nontrivial Einstein background (for
instance, on Schwarzschild spacetime) are positively unstable. Such solutions can not be sta-
bilized by the former methods with dynamical solutions and, as a consequence, certain new
models of nonsymmetric gravity models and methods of stabilizations should be developed.

It should be emphasized that the Janssen–Prokopek stability problem does not have a
generic character for all models of gravity with nonsymmetric variables. As we emphasized
above, the Einstein gravity can be represented equivalently in canonical almost symplec-
tic variables and such a formal theory with nonsymmetric metric (nonholonomically trans-
formed into components of a symplectic form) is stable under deformations of the Schwarz-
schild metric. But in such a representation, we have also certain nontrivial nonholonomic
structures. So, it is important to study the problem of stability of physical valuable solutions
in general relativity under nonholonomic deformations, which may keep the constructions
in the framework of the Einstein theory (with certain classes of imposed non-integrable con-
straints), or may generalize the gravity theory to models with nontrivial contributions from
Ricci flow evolution (for instance, under variation of gravitational constants) and/or from a
noncommutative/quantum gravity theory.

The goal of this paper is to prove that stable configurations can be derived for various
models of nonsymmetric gravity theories [21–27]. We shall use a geometric techniques elab-
orated in [1, 2, 6, 39, 40] and show how nonholonomic frame constraints can be imposed in
order to generate stable solutions in nonsymmetric gravity theories. For vanishing nonsym-
metric components of metrics such configurations can be reduced to nonholonomic3 ones in
general relativity theory and generalizations. We shall provide explicit examples of station-
ary solutions with ellipsoidal symmetry which can be constructed in nonsymmetric gravity
and general relativity theories; such metrics are stable and transform into the Schwarzschild
one for zero eccentricities.

In brief, the Janssen–Prokopec method proving that a full, nonlinearized, nonsymmetric
gravity theories may suffer from instabilities can be summarized in this form: One shows
that there is only one stable linearized Lagrangian (see in [31] the formula (A26) which can
be obtained from their formula (86); similar formulas, (43) and (45), are provided below in
Sect. 3). Then, following certain explicit computations for different backgrounds in general
relativity, one argues that for the Schwarzschild background the mentioned variant of sta-
ble Lagrangian cannot be obtained by linearizing nonsymmetric gravity theories (because
in such cases, the coefficient γ in the mentioned formulas, can not be zero for the static
spherical symmetric background in general relativity).

Generalizing the constructions from [31] in order to include certain types of nonholo-
nomic distributions on (non) symmetric spacetime manifolds, we shall prove that stable
Lagrangians can be generated by a superposition of nonholonomic transforms and lineariza-
tion in general models of nonsymmetric gravity theories with compatible (nonsymmetric)
metrics and nonlinear and linear connection structures.

3Equivalently, there are used the terms anholonomic and/or nonintegrable.
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We argue that fixing from the very beginning an ansatz with spherical symmetry back-
ground (for instance, the Schwarzschild solution in gravity), one eliminates from consid-
eration a large class of physically important symmetric and nonsymmetric nonlinear grav-
itational interactions. The resulting instability of such constrained to a given background
solutions reflects the proprieties of some very special classes of solutions but not any intrin-
sic, fundamental, general characteristics of nonsymmetric gravity theories. For instance, we
shall construct explicit “ellipsoidal” stationary solutions in nonsymmetric gravity theories to
which a static Schwarzschild metric is deformed by very small nonsymmetric metric compo-
nents and nonholonomic distributions and which seem to be stable for geometric distorsions
in Einstein gravity [41, 42].4 Such metrics were constructed for different models of metric-
affine, generalized Finsler on nonholonomic manifolds and noncommutative gravity [5, 40,
43]) and can be included in nonsymmetric gravity theories both by nonsymmetric metric
components and/or as a nonholonomic symmetric background, see examples from [2].

One should be noted that in a number of works on gravity with nonsymmetric metrics
the short term NGT is used [35, 36] (instead of nonsymmetric gravity theory/-ies, see details
in [22–24, 38]). This may result in some misunderstanding with the “noncommutative grav-
ity theory” developed in some approaches to noncommutative geometry and applications.
In order to avoid ambiguities with the term NGT, in this work, we shall write explicitly the
words “nonsymmetric gravity theory/-ies”, for geometric and physical models with nonsym-
metric metrics on commutative (in general, nonholonomic) manifolds. We shall not consider
possible relations between nonsymmetric metrics and noncommutative geometry. Here we
also emphasize that black ellipsoid solutions analyzed in Sect. 4 of this work are only for
nonholonomic deformations in general relativity and nonsymmetric gravity theories. Simi-
lar classes of solutions have been constructed in [41–43] (see also Parts I and II in mono-
graph [40], for (non) commutative metric-affine, gauge and string gravity generalizations)
and positively have certain connections solutions defining “noncommutative black holes”
[44, 45].

The paper is organized as follows: In Sect. 2, we outline some basic results from the
geometry of nonholonomic manifolds and nonsymmetric gravity models on such spaces.
The equivalent formulation of the Einstein gravity in canonical almost symplectic variables
is provided. Section 3 is devoted to a method of nonholonomic deformations and lineariza-
tion to backgrounds with symmetric metrics and nonholonomic distributions. We show how
certain classes of nonsymmetric metric configurations can be stabilized by corresponding
nonholonomic constraints. We present an explicit example in Sect. 4, when stable stationary
solutions with nontrivial nonsymmetric components of metric and nonholonomic distribu-
tions are constructed as certain deformations of the Schwarzschild metric to an ellipsoidal
nonholonomic background on which a constrained dynamics on nonsymmetric metric fields
is modelled. Finally, in Sect. 5 we present conclusions and discuss the results. In Appendix,
we provide some important formulas on torsion and curvature of linear connections adapted
to a prescribed nonlinear connection structure.

2 Almost Kähler Variables in Einstein and Nonsymmetric Gravity Theories

In general relativity, we consider a real four dimensional (pseudo) Riemannian spacetime
manifold V of signature (−,+,+,+) and necessary smooth class. For a conventional 2 + 2

4In this work, we can consider that the nonsymmetric components of a general metric induce such geometric
and effective matter field distortions.
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splitting, the local coordinates u = (x, y) on a open region U ⊂ V are labelled in the
form uα = (xi, ya), where indices of type i, j, k, . . . = 1,2 and a, b, c . . . = 3,4, for tensor
like objects, will be considered with respect to a general (non-coordinate) local basis eα =
(ei, ea). One says that xi and ya are respectively the conventional horizontal/nonholonomic
(h) and vertical/holonomic (v) coordinates (both types of such coordinates can be time- or
space-like ones). Primed indices of type i ′, a′, . . . will be used for labelling coordinates with
respect to a different local basis eα′ = (ei′ , ea′) or eα′ = (e′

0, eI ′), for instance, for an ortho-
normalized basis. For the local tangent Minkowski space, we chose e0′ = i∂/∂u0′

, where i

is the imaginary unity, i2 = −1, and write eα′ = (i∂/∂u0′
, ∂/∂u1′

, ∂/∂u2′
, ∂/∂u3′

). To con-
sider such formal Euclidean coordinates is useful for some purposes of analogous modelling
of gravity theories as effective Lagrange mechanics geometries, but this does not mean that
we introduce any complexification of classical spacetimes. In this section, we outline the
constructions for classical gravity from [3, 4, 12].

2.1 N-Anholonomic (Pseudo) Riemannian Manifolds

The coefficients of a general (pseudo) Riemannian metric on a spacetime V are parame-
trized in the form:

g = gi′j ′(u)ei′ ⊗ ej ′ + ha′b′(u)ea′ ⊗ eb′
,

(1)
ea′ = ea′ − Na′

i′ (u)ei′ ,

where the required form of vierbein coefficients eα′
α of the dual basis eα′ = (ei′ , ea′

) =
eα′

α(u)duα, defining a formal 2 + 2 splitting, will be stated below.
On spacetime V, we consider any generating function L(u) = L(xi, ya) (we may call it

a formal Lagrangian if an effective continuous mechanical model of general relativity is to
be elaborated, see [6, 39, 40]) with nondegenerate Hessian

Lhab = 1

2

∂2L

∂ya∂yb
, (2)

when det |Lhab| �= 0. This function is useful for constructing in explicit form a nonholonomic
2 + 2 splitting for which a canonical almost symplectic model of general relativity will be
defined. We use L as an abstract label and emphasize that the geometric constructions are
general ones, not depending on the type of function L(u) which states only a formal class
of systems of reference and coordinates. We introduce

LNa
i = ∂Ga

∂y2+i
, (3)

for

Ga = 1

4
Lha 2+i

(
∂2L

∂y2+i∂xk
y2+k − ∂L

∂xi

)
, (4)

where Lhab is inverse to Lhab and respective contractions of h- and v-indices, i, j, . . . and
a, b . . . , are performed following the rule: we can write, for instance, an up v-index a as
a = 2 + i and contract it with a low index i = 1,2. Briefly, we shall write yi instead of y2+i ,

or ya. The values (2), (3) and (4) allow us to define
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Lg = Lgij dxi ⊗ dxj + Lhab
Lea ⊗ Leb,

(5)
Lea = dya + LNa

i dxi, Lgij = Lh2+i 2+j .

A metric g (1) with coefficients gα′β ′ = [gi′j ′ , ha′b′ ] computed with respect to a dual basis
eα′ = (ei′ , ea′

) can be related to the metric Lgαβ = [Lgij ,
Lhab] (5) with coefficients defined

with respect to a N-adapted dual basis Leα = (dxi, Lea) if there are satisfied the conditions

gα′β ′eα′
αe

β ′
β = Lgαβ . (6)

Considering any given values gα′β ′ and Lgαβ, we have to solve a system of quadratic al-
gebraic equations with unknown variables eα′

α. How to define locally such coordinates, we
discuss in [6, 14]. For instance, in general relativity, there are 6 independent values gα′β ′
and up till ten coefficients Lgαβ which allows us always to define a set of vierbein coeffi-
cients eα′

α. Usually, a subset of such coefficients can be taken to be zero, for given values
[gi′j ′ , ha′b′ ,Na′

i′ ] and [Lgij ,
Lhab,

LNa
i ], when

Na′
i′ = e i

i′ e
a′
a

LNa
i (7)

for e i
i′ being inverse to ei′

i .

For simplicity, in this work, we suppose that there is always a finite covering of V2+2 (in
brief, denoted V) by a family of open regions IU, labelled by an index I, on which there
are considered certain nontrivial effective Lagrangians IL with real solutions I eα′

α defining
vielbein transforms to systems of so-called Lagrange variables. Finally, we solve the alge-
braic equations (6) for any prescribed values gi′j ′ (we also have to change the partition IU

and generating function IL till we are able to construct real solutions) and find I ei′
i which,

in its turn, allows us to compute Na′
i′ (7) and all coefficients of the metric g (1) and vierbein

transform. We shall omit for simplicity the left label L if that will not result in a confusion
for some special constructions.

A nonlinear connection (N-connection) structure N for V is defined by a nonholonomic
distribution (a Whitney sum)

T V = hV ⊕ vV (8)

into conventional horizontal (h) and vertical (v) subspaces. In local form, a N-connection is
given by its coefficients Na

i (u), when

N = Na
i (u)dxi ⊗ ∂

∂ya
. (9)

A N-connection introduces on Vn+n a frame (vielbein) structure

eν =
(

ei = ∂

∂xi
− Na

i (u)
∂

∂ya
, ea = ∂

∂ya

)
, (10)

eμ = (
ei = dxi, ea = dya + Na

i (u)dxi
)
. (11)

The vielbeins (11) satisfy the nonholonomy relations

[eα, eβ ] = eαeβ − eβeα = w
γ

αβeγ (12)



Int J Theor Phys (2009) 48: 1973–1999 1979

with (antisymmetric) nontrivial anholonomy coefficients wb
ia = ∂aN

b
i and wa

ji = �a
ij , where

�a
ij = ej

(
Na

i

) − ei

(
Na

j

)
(13)

define the coefficients of N-connection curvature. The particular holonomic/integrable case
is selected by the integrability conditions w

γ

αβ = 0.5

A N-anholonomic manifold is a (nonholonomic) manifold enabled with N-connection
structure (8). The geometric properties of a N-anholonomic manifold are distinguished by
some N-adapted bases (10) and (11). A geometric object is N-adapted (equivalently, distin-
guished), i.e. a d-object, if it can be defined by components adapted to the splitting (8) (one
uses terms d-vector, d-form, d-tensor). For instance, a d-vector X = Xαeα = Xiei + Xaea

and a one d-form X̃ (dual to X) is X̃ = Xαeα = Xie
i + Xae

a.6

2.2 Canonical Almost Symplectic Structures in General Relativity

Let eα′ = (ei , eb′) and eα′ = (ei, eb′
) be defined respectively by (10) and (11) for the canoni-

cal N-connection LN (3) stated by a metric structure g = Lg (5) on V. We introduce a linear
operator J acting on vectors on V following formulas J(ei ) = −e2+i where J(e2+i ) = ei ,

where J ◦ J = −I, for I being the unity matrix. Alternatively, J can be regarded as a tensor
field on V,

J = Jα
β eα ⊗ eβ = Jα

β

∂

∂uα
⊗ duβ

= Jα′
β ′ eα′ ⊗ eβ ′ = −e2+i ⊗ ei + ei ⊗ e2+i

= − ∂

∂yi
⊗ dxi +

(
∂

∂xi
− LN

2+j

i

∂

∂yj

)
⊗ (

dyi + LN2+i
k dxk

)
, (14)

defining globally an almost complex structure on V completely determined by a fixed
L(x, y). Using vielbeins eα

α and their duals e α
α , defined by eα′

α solving (6), we can compute

the coefficients of tensor J with respect to any local basis eα and eα on V, Jα
β = eα

αJα

βe
β

β .

In general, we can define an almost complex structure J for an arbitrary N-connection N,

stating a nonholonomic 2 + 2 splitting, by using N-adapted bases (10) and (11).
The Neijenhuis tensor field for any almost complex structure J defined by a N-connection

(equivalently, the curvature of N-connection) is

J�(X,Y) � −[X,Y] + [JX,JY] − J[JX,Y] − J[X,JY], (15)

for any d-vectors X and Y. With respect to N-adapted bases (10) and (11), a subset of the
coefficients of the Neijenhuis tensor defines the N-connection curvature, see details in [11],

�a
ij = ∂Na

i

∂xj
− ∂Na

j

∂xi
+ Nb

i

∂Na
j

∂yb
− Nb

j

∂Na
i

∂yb
. (16)

5We use boldface symbols for spaces (and geometric objects on such spaces) enabled with N-connection
structure.
6We can redefine equivalently the geometric constructions for arbitrary frame and coordinate systems; the
N-adapted constructions allow us to preserve the h- and v-splitting.
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A N-anholonomic manifold V is integrable if �a
ij = 0. We get a complex structure if and

only if both the h- and v-distributions are integrable, i.e. if and only if �a
ij = 0 and

∂Na
j

∂yi −
∂Na

i

∂yj = 0.

One calls an almost symplectic structure on a manifold V a nondegenerate 2-form θ =
1
2θαβ(u)eα ∧ eβ. There is a unique N-connection N = {Na

i } (8) satisfying the conditions:

θ(hX, vY) = 0 and θ = hθ + vθ, (17)

for X = hX+vX, Y = hY+vY, where hθ(X,Y) � θ(hX,hY) and vθ(X,Y) � θ(vX,vY).

For X = eα = (ei , ea) and Y = eβ = (el , eb), where eα is a N-adapted basis of type (10),
we write the first equation in (17) in the form θ(ei , ea) = θ( ∂

∂xi ,
∂

∂ya ) − Nb
i θ( ∂

∂yb , ∂
∂ya ) = 0.

We can solve this system of equations in a unique form and define Nb
i if rank|θ( ∂

∂yb , ∂
∂ya )| = 2.

Denoting locally

θ = 1

2
θij (u)ei ∧ ej + 1

2
θab(u)ea ∧ eb, (18)

where the first term is for hθ and the second term is vθ, we get the second formula in (17).
An almost Hermitian model of a (pseudo) Riemannian space V equipped with a N-

connection structure N is defined by a triple H2+2 = (V, θ,J), where θ(X,Y) � g(JX,Y)

for any g (1). A space H2+2 is almost Kähler, denoted K2+2, if and only if dθ = 0.

For g = Lg (5) and structures LN (3) and J canonically defined by L, we define
Lθ(X,Y) � Lg(JX,Y) for any d-vectors X and Y. In local N-adapted form, we have

Lθ = 1

2
Lθαβ(u)eα ∧ eβ = 1

2
Lθαβ(u)duα ∧ duβ

= Lgij (x, y)e2+i ∧ dxj = Lgij (x, y)(dy2+i + LN2+i
k dxk) ∧ dxj . (19)

Let us consider the form Lω = 1
2

∂L

∂yi dxi . A straightforward computation shows that Lθ =
d Lω, which means that d Lθ = dd Lω = 0, i.e. the canonical effective Lagrange structures
g = Lg, LN and J induce an almost Kähler geometry. We can express the 2-form (19) as

θ = Lθ = 1

2
Lθij (u)ei ∧ ej + 1

2
Lθab(u)ea ∧ eb

= gij (x, y)
[
dyi + Ni

k(x, y)dxk
] ∧ dxj , (20)

see (18), where the coefficients Lθab = Lθ2+i 2+j are equal respectively to the coefficients
Lθij . It should be noted that for a general 2-form θ constructed for any metric g and almost
complex J structures on V one holds dθ �= 0. But for any 2 + 2 splitting induced by an
effective Lagrange generating function, we have d Lθ = 0. We have also dθ = 0 for any set
of 2-form coefficients θα′β ′eα′

αe
β ′
β = Lθα′β ′ (such a 2-form θ will be called to be a canonical

one), constructed by using formulas (6).
We conclude that having chosen a generating function L(x, y) on a (pseudo) Riemannian

spacetime V, we can model this spacetime equivalently as an almost Kähler manifold

2.3 Equivalent Metric Compatible Linear Connections

A distinguished connection (in brief, d-connection) on a spacetime V,

D = (hD;vD) = {
α
βγ = (Li

jk,
vLa

bk;Ci
jc,

vCa
bc)},
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is a linear connection which preserves under parallel transports the distribution (8). In
explicit form, the coefficients 
α

βγ are computed with respect to a N-adapted basis (10)
and (11). A d-connection D is metric compatible with a d-metric g if DXg = 0 for any d-
vector field X.

If an almost symplectic structure θ is considered on a N-anholonomic manifold, an al-
most symplectic d-connection θ D on V is defined by the conditions that it is N-adapted,
i.e. it is a d-connection, and θ DXθ = 0, for any d-vector X. From the set of metric and/or
almost symplectic compatible d-connections on a (pseudo) Riemannian manifold V, we can
select those which are completely defined by a metric g = Lg (5) and an effective Lagrange
structure L(x, y):

There is a unique normal d-connection

D̂ = {
hD̂ = (D̂k,

vD̂k = D̂k);vD̂ = (D̂c,
vD̂c = D̂c)

}
= {
̂α

βγ = (L̂i
jk,

vL̂2+i
2+j 2+k = L̂i

jk; Ĉi
jc = vĈ2+i

2+j c,
vĈa

bc = Ĉa
bc)}, (21)

which is metric compatible, D̂k
Lgij = 0 and D̂c

Lgij = 0, and completely defined by a cou-

ple of h- and v-components D̂α = (D̂k, D̂c), with N-adapted coefficients 
̂α
βγ = (L̂i

jk,
vĈa

bc),

where

L̂i
jk = 1

2
Lgih

(
ek

Lgjh + ej
Lghk − eh

Lgjk

)
,

(22)

Ĉi
jk = 1

2
Lgih

(
∂ Lgjh

∂yk
+ ∂ Lghk

∂yj
− ∂ Lgjk

∂yh

)
.

In general, we can “forget” about label L and work with arbitrary gα′β ′ and 
̂α′
β ′γ ′ with the

coefficients recomputed by frame transforms.
Introducing the normal d-connection 1-form 
̂i

j = L̂i
jke

k + Ĉi
jkek, we prove that the Car-

tan structure equations are satisfied,

dek − ej ∧ 
̂k
j = −T̂ i , dek − ej ∧ 
̂k

j = − v T̂ i , (23)

d
̂i
j − 
̂h

j ∧ 
̂i
h = −R̂i

j . (24)

The h- and v-components of the torsion 2-form T̂ α = (T̂ i , v T̂ i ) = T̂α
τβ eτ ∧ eβ from (23) is

computed with components

T̂ i = Ĉi
jke

j ∧ ek, v T̂ i = 1

2
L�i

kj e
k ∧ ej +

(
∂ LNi

k

∂yj
− L̂i

kj

)
ek ∧ ej , (25)

where L�i
kj are coefficients of the curvature of the canonical N-connection Ň i

k defined by
formulas similar to (16). The formulas (25) parametrize the h- and v-components of torsion
T̂α

βγ in the form

T̂ i
jk = 0, T̂ i

jc = Ĉi
jc, T̂ a

ij = L�a
ij , T̂ a

ib = eb

(
LNa

i

) − L̂a
bi , T̂ a

bc = 0. (26)

It should be noted that T̂ vanishes on h- and v-subspaces, i.e. T̂ i
jk = 0 and T̂ a

bc = 0, but certain
nontrivial h-v-components induced by the nonholonomic structure are defined canonically
by g = Lg (5) and L. For convenience, in Appendix, we outline some important component
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formulas for the canonical d-connection which on spaces of even dimensions transform into
those for the normal connection.

We compute also the curvature 2-form from (24),

R̂τ
γ = R̂τ

γ αβ eα ∧ eβ = 1

2
R̂i

jkhe
k ∧ eh + P̂ i

jkae
k ∧ ea + 1

2
Ŝi

jcdec ∧ ed ,

where the nontrivial N-adapted coefficients of curvature R̂α
βγ τ of D̂ are

R̂i
hjk = ekL̂

i
hj − ej L̂

i
hk + L̂m

hj L̂
i
mk − L̂m

hkL̂
i
mj − Ĉi

ha
L�a

kj ,

P̂ i
jka = eaL̂

i
jk − D̂kĈ

i
ja, (27)

Ŝa
bcd = edĈ

a
bc − ecĈ

a
bd + Ĉe

bcĈ
a
ed − Ĉe

bd Ĉ
a
ec.

Contracting the first and forth indices R̂βγ = R̂α
βγα , we get the N-adapted coefficients for

the Ricci tensor R̂βγ =(R̂ij , R̂ia, R̂ai , R̂ab). The scalar curvature LR = R̂ of D̂ is

LR = Lgβγ R̂βγ = gβ ′γ ′
R̂β ′γ ′ . (28)

The normal d-connection D̂ (21) defines a canonical almost symplectic d-connection,
D̂ ≡ θ D̂, which is N-adapted to the effective Lagrange and, related, almost symplectic
structures, i.e. it preserves under parallelism the splitting (8), θ D̂X

Lθ =θ D̂X θ =0 and its
torsion is constrained to satisfy the conditions T̂ i

jk = T̂ a
bc = 0.

In the canonical approach to the general relativity theory, one works with the Levi Civita
connection 
 = {�


α
βγ } which is uniquely derived following the conditions � T = 0 and


g = 0. This is a linear connection but not a d-connection because 
 does not preserve
(8) under parallelism. Both linear connections 
 and D̂ ≡ θ D̂ are uniquely defined in metric
compatible forms by the same metric structure g (1). The second one contains nontriv-
ial d-torsion components T̂α

βγ (26), induced effectively by an equivalent Lagrange metric
g = Lg (5) and adapted both to the N-connection LN, see (3) and (8), and almost symplec-
tic Lθ (19) structures L.

Any geometric construction for the normal d-connection D̂(θ) can be re-defined by the
Levi Civita connection, and inversely, using the formula

�

γ

αβ(θ) = 
̂
γ

αβ(θ) + �Z
γ

αβ(θ), (29)

where the both connections �

γ

αβ(θ) and 
̂
γ

αβ(θ) and the distorsion tensor �Z
γ

αβ(g)

with N-adapted coefficients (for the normal d-connection �Z
γ

αβ(g) is proportional to T̂α
βγ (g)

(26)), see formulas (A.3). In this work, we emphasize if it is necessary the functional de-
pendence of certain geometric objects on a d-metric (g), or its canonical almost symplectic
equivalent (θ) for tensors and connections completely defined by the metric structure.7

2.4 An Almost Symplectic Formulation of General Relativity

Having chosen a canonical almost symplectic d-connection, we compute the Ricci d-tensor
R̂ βγ and the scalar curvature LR, see formulas (28)). Then, we can postulate in a straight-

7See Appendix on similar deformation properties of fundamental geometric objects.
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forward form the field equations

R̂α

β − 1

2
(LR + λ)eα

β = 8πGTα

β, (30)

where R̂α

β = eα
γ R̂ γ

β, Tα

β is the effective energy-momentum tensor, λ is the cosmologi-
cal constant, G is the Newton constant in the units when the light velocity c = 1, and the
coefficients eα

β of vierbein decomposition e β = eα

β∂/∂uα are defined by the N-coefficients
of the N-elongated operator of partial derivation, see (10). But the equations (30) for the
canonical 
̂

γ

αβ(θ) are not equivalent to the Einstein equations in general relativity written
for the Levi–Civita connection �


γ

αβ(θ) if the tensor Tα

β does not include contributions of

�Z
γ

αβ(θ) in a necessary form.
Introducing the absolute antisymmetric tensor εαβγ δ and the effective source 3-form

T β = Tα

β εαβγ δduβ ∧ duγ ∧ duδ

and expressing the curvature tensor R̂τ
γ = R̂τ

γ αβ eα ∧ eβ of 
̂α
βγ = �


α
βγ − �Ẑα

βγ as
R̂τ

γ = � Rτ
γ − � Ẑ τ

γ , where � Rτ
γ = �R

τ
γαβ eα ∧ eβ is the curvature 2-form of the Levi–Civita

connection ∇ and the distorsion of curvature 2-form Ẑ τ
γ is defined by Ẑα

βγ , see (29), we
derive (30) (varying the action on components of e β, see details in [14]). The gravitational
field equations are represented as 3-form equations,

εαβγ τ

(
eα ∧ R̂βγ + λeα ∧ eβ ∧ eγ

) = 8πGT τ , (31)

when T τ = mT τ + Z T̂ τ ,

mT τ = mTα
τ εαβγ δduβ ∧ duγ ∧ duδ,

Z T τ = (8πG)−1 Ẑ α
τ εαβγ δduβ ∧ duγ ∧ duδ,

where mTα
τ is the matter tensor field. The above mentioned equations are equivalent to the

usual Einstein equations for the Levi–Civita connection ∇,

�R
α

β − 1

2
(�R + λ)eα

β = 8πG mTα

β .

If former geometric constructions in general relativity were related to frame and coor-
dinate form invariant transforms, various purposes in geometric modelling of physical in-
teractions and quantization request application of more general classes of transforms. For
such generalizations, the linear connection structure is deformed (in a unique/canonical
form following well defined geometric and physical principles) and there are considered
nonholonomic spacetime distributions. All geometric and physical information for any data
1) [g, �


γ

αβ(g)] are transformed equivalently for canonical constructions with 2) [g = Lg, N,


̂
γ

αβ(g)], which allows us to provide an effective Lagrange interpretation of the Einstein
gravity, or 3) [θ = Lθ, θ 
̂

γ

αβ = 
̂
γ

αβ,J(θ)], for an almost Kähler model of general rela-
tivity. The canonical almost symplectic form θ (20) represents the “original” metric g (1)
equivalently in a “nonsymmetric” form. Any deformations of such structures, in the frame-
work of general relativity or quantized models and generalizations, result in more general
classes of nonsymmetric metrics.
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3 Nonsymmetric Gravity Theories with Nonholonomic Distributions

In this section, we follow the geometric conventions and results from [1]. We outline
some basic definitions and formulas from the geometry of nonholonomic manifolds enabled
with nonlinear connection and general nonsymmetric structure and introduce a general La-
grangian for nonsymmetric gravity theories and corresponding nonholonomic distributions.

3.1 On Geometry of N-Anholonomic Manifolds

In this paper, we also consider gravity models on spaces (ǧij ,Vn+n,N) when the h-subspace
is enabled with a nonsymmetric tensor field (metric) ǧij = gij + aij , where the symmetric
part gij = gji is nondegenerated and aij = −aji . A d-metric ǧij (x, y) is of index k if there
are satisfied the properties: 1. det |gij | �= 0 and 2. rank|aij | = n − k = 2p, for 0 ≤ k ≤ n.

By gij we note the reciprocal (inverse) to gij d-tensor field. The matrix aij is not invertible
unless for k = 0.

For k > 0 and a positive definite gij (x, y), on each domain of local chart there exists k

d-vector fields ξ i
i′ , where i = 1,2, . . . , n and i ′ = 1, . . . , k with the properties aij ξ

j

j ′ = 0 and

gij ξ
i
i′ξ

j

j ′ = δi′j ′ . If gij is not positive definite, we shall assume the existence of k linearly
independent d-vector fields with such properties.

The metric properties on Vn+n are supposed to be defined by d-tensor

ǧ = g + a = ǧαβeα ⊗ eβ = ǧij e
i ⊗ ej + ǧabea ⊗ eb, (32)

g = gαβeα ⊗ eβ = gij e
i ⊗ ej + gabea ⊗ eb, (33)

a = aij e
i ∧ ej + acbec ∧ eb,

where the v-components ǧab are defined by the same coefficients as ǧij . With respect to a
coordinate local cobasis duα = (dxi, dya), we have equivalently g = g

αβ
duα ⊗ duβ, where

g
αβ

=
[
gij + Na

i Nb
j gab Ne

j gae

Ne
i gbe gab

]
. (34)

A h-v-metric on a N-anholonomic manifold is a second rank d-tensor of type (32). One
considers matrices (see details in [1]) ĝ = (gij ), ξ̂ = (ξ i

i′),̂ l = (lij ), η̂ = (ηi′
i ), m̂ = (mi

j ), δ̂
′ =

(δi′j ′), δ̂ = (δi
j ), where the skew symmetric matrices â = (aij ) and ǎ = (ǎij ) do not depend

on the choice of ξ̂ and uniquely defined by âǎ = t m̂ and l̂ǎ = 0 on Vn+n.

In general, the concept of linear connection (adapted or not adapted to a N-connection
structure) is independent from the concept of metric (symmetric or nonsymmetric). A distin-
guished connection (d-connection) D on V is a N-adapted linear connection, preserving by
parallelism the vertical and horizontal distribution (8). In local form, D =(hD, vD) is given
by its coefficients 


γ

αβ = (Li
jk,L

a
bk,C

i
jc,C

a
bc), where hD = (Li

jk,L
a
bk) and vD = (Ci

jc,C
a
bc)

are respectively the covariant h- and v-derivatives. For any d-connection, we can compute
the torsion, curvature and Ricci tensors and scalar curvature, see Appendix.

A normal d-connection nD is compatible with the almost complex structure J (14), i.e.
satisfies the condition

nDXJ = 0, (35)

for any d-vector X on Vn+n. The operator nD is characterized by a pair of local co-
efficients n


γ

αβ = (nL
i
jk, nC

a
bc) defined by conditions nDek

(ej ) = nL
i
jkei , nDek

(ea) =
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nL
b
akeb, nDec (ej ) = nC

i
jcei , nDec (ea) = nC

b
aceb, where nL

i
jk = nL

b
ak for j = a, i = b, and

nC
i
jc = nC

b
ac, j = a, i = b. Here we emphasize that the normal d-connection nD is differ-

ent from D̂ (21) (the first one is defined for a space with nonsymmetric metrics, but for the
second one the metrics must by symmetric).

A d-connection D = {
γ

αβ} is compatible with a nonsymmetric d-metric ǧ if

Dkǧij = 0 and Daǧij = 0. (36)

For a d-metric (32), the equations (36) are

Dkgij = 0, Dagbc = 0, Dkaij = 0, Deabc = 0. (37)

The set of d-connections {D} satisfying the conditions DXg = 0 for a given g is defined by
formulas

Li
jk = L̂i

jk + −Oei
kmXm

ej , La
bk = L̂a

bk + −Oca
bdYd

ck,

Ci
jc = Ĉi

jc + +Omi
jk Xk

mc, Ca
bc = Ĉa

bc + +Oea
bdYd

ec,

where

±Oih
jk = 1

2
(δi

j δ
h
k ± gjkg

ih), ±Oca
bd = 1

2
(δc

bδ
a
d ± gbdg

ca) (38)

are the so-called the Obata operators; Xm
ej ,Xk

mc,Yd
ck and Yd

ec are arbitrary d-tensor fields and

̂

γ

αβ = (L̂i
jk, L̂

a
bk, Ĉ

i
jc, Ĉ

a
bc), with

L̂i
jk = 1

2
gir

(
ekgjr + ejgkr − ergjk

)
,

L̂a
bk = eb(N

a
k ) + 1

2
gac

(
ekgbc − gdc ebN

d
k − gdb ecN

d
k

)
, (39)

Ĉi
jc = 1

2
gikecgjk, Ĉa

bc = 1

2
gad (ecgbd + ecgcd − edgbc)

is the canonical d-connections uniquely defined by the coefficients of d-metric g =[gij , gab]
and N-connection N = {Na

i } in order to satisfy the conditions D̂Xg = 0 and T̂ i
jk = 0 and

T̂ a
bc = 0 but T̂ i

ja, T̂
a
ji and T̂ a

bi are not zero (on definition of torsion, see Appendix; we

can compute the torsion coefficients T̂γ

αβ by introducing d-connection coefficients (39)
into (A.1)).

By direct computations, we can check that for any given d-connection ◦
α
βγ =

(◦Li
jk, ◦Ca

bc) and nonsymmetric d-metric ǧ = g + a on V the d-connection ∗
α
βγ =

(∗Li
jk, ∗Ca

bc), where

∗Li
jk = ◦Li

jk + 1

2
[gir ◦Dkgrj + ±Oir

sj (ǎ
st ◦Dkatr + 3lst ◦Dkltr − ◦Dklsr )]

∗Ca
bc = ◦Ca

bc + 1

2
[gah ◦Dcghb + ±Oah

eb (ǎed ◦Dcadh + 3led ◦Dcl
d
h − ◦Dcl

e
h)]

is d-metric compatible, i.e there are satisfied the conditions ∗Dǧ = 0.

The set of d-connections D = ◦D + B being generated by deformations of an arbitrary
fixed d-connection ◦D in order to be compatible with a given nonsymmetric d-metric ǧ =
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g+a on V is defined by distorsion d-tensors B =(hB, vB) which can be computed in explicit
form, see [1]. In this paper, for simplicity, we shall work with a general d-connection D
which is compatible to ǧ, i.e. satisfies the conditions (37), or (36), and can be generated
by a distorsion tensor B from D̂ (39), or from nD (35). We note that for certain canonical
constructions the d-objects D, ◦D, D̂, nD and B are completely defined by the coefficients
of a d-metric ǧ = g + a and N on V.

Finally, it should be emphasized that because ◦
α
βγ = (◦Li

jk, ◦Ca
bc) is an arbitrary

d-connection, it can be chosen to be an important one for certain physical or geometrical
problems. In this work, we shall consider certain exact solutions in gravity with nonholo-
nomic variables defining a corresponding ◦
α

βγ and then deformed to nonsymmetric con-
figurations.

3.2 General Nonsymmetric Gravity Models with d-Connections

The goal of this section is to analyze N-adapted nonholonomic nonsymmetric gravity mod-
els completely defined by a N-connection N = {Na

i }, d-metric ǧ = g + a (32) and a metric
compatible d-connection 
λ

μν.

We follow a N-adapted variational calculus, when instead of partial derivatives there
are used the “N-elongated” partial derivatives eρ (10), varying independently the d-fields
ǧ = g + a and 
α

βγ . In this case, ǎ = (ǎij ) does not depend on the choice of fields ξ̂ and
we can write ǧ[ρσ ] = ǎρσ = [ǎij , ǎcb], where ǎij = −ǎj i and ǎcb = −ǎbc. We shall work
with d-connections, Wλ

μν � 
λ
μν − 2

3δλ
μ Wν, where Wν = 1

2 (Wλ
μλ − Wλ

λμ), which means
that 
α

[βγ ] = 0. This defines a covariant derivative of type W Dγ ǧαβ = eγ ǧαβ − Wτ
αγ ǧτβ −

Wτ
βγ ǧατ . We also can compute Pμν � W Rλ

λμν = eμWλ
λν − eνWλ

λμ, where W Rλ
λμν is com-

puted following formulas (A.2) with d-connection W instead of 
. The corresponding to W
and 
 Ricci d-tensors, are related by formulas

W Rμν = 
Rμν + 2

3
e[ν Wμ],

where 
Rμν is computed for the symmetric part of metric. The variables of this generalized
theory, with gravitational constant (16πGN)−1 = 1, are parametrized:

ǧμν = gμν + aμν + . . . , full, nonsymmetric d-metric;

ǧ(μν) = 1

2
(ǧμν + ǧνμ) ≈ gμν, symmetric d-metric;

ǧ[μν] = 1

2
(ǧμν − ǧνμ) ≈ aμν, antisymmetric d-metric;

ǧμα ǧμβ = ǧαμǧβμ = δβ
α �= ǧαμǧμβ;

Wα
βγ � 
α

βγ − 2

3
δα
β W γ , full, nonsymmetric d-connection;

W β � Wα
[βα].

We shall use a nonholonomic generalization of the Lagrangian from [34],

L =
√

−ǧǧμν[W Rμν + a1Pμν + a2e[μ Wν] + b1 W Dγ Wγ

[μν]

+ b2Wλ
[μα]W

α
[λν] + b3Wλ

[μν]Wλ + ǧλδ ǧαβ(c1Wα
[μλ]W

β

[νδ]
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+ c2Wα
[μν]W

β

[λδ] + c3Wα
[μδ]W

β

[νλ] + d1WμWν + 2�)], (40)

where the parameters a1, a2, etc. are certain constants and � is the cosmological constant.
One should fix certain values of such constants and take Wα

βγ to be defined by a general
affine (in particular, Levi–Civita) connection, in order to get different Moffat or other models
of noncommutative gravity theory.

3.3 Linearization to Symmetric Anholonomic Backgrounds

We prove that for general nonsymmetric metrics defined on nonholonomic manifolds and
corresponding nonholonomic deformations and linearization a class of general Lagrangians
for nonsymmetric gravity theory can be transformed into stable Lagrangians similar to those
used in σ -model and anholonomic and/or noncommutative corrections to general relativity.
We follow the geometric formalism elaborated in [1, 39, 40] and reconsider the results of
works [31, 32] for nonholonomic spaces enabled both with nonlinear connection and non-
symmetric metric structures.

Let us consider an expansion of the Lagrangian (40) for ǧ = g + a around a background
spacetime defined by a symmetric metric g = {gαβ} and a metric compatible d-connection
b
α

βγ defined by N and g (it can be a normal, canonical d-connection, Cartan or another
one) and denote ǧ[αβ] = aαβ . We use decompositions of type

ǧαβ = gαβ + 1gαβ + . . . , aαβ = 1aαβ + 2aαβ . . . ,
(41)


α
βγ = b
α

βγ + 1
α
βγ + . . . , Wμ = 1Wμ + 2Wμ + . . .

when, re-defining 1aαβ → aαβ, 2aαβ ∼ a.. · a.., one holds

ǧμν = gμν + aμν + ρaμαaα
ν + σa2gμν + O(a3),

(42)
ǧμν = gμν + aμν + (1 − ρ)aμαa ν

α + σa2gμν + O(a3),

which implies that
√|ǧμν | =

√|gμν |[1+ 1
2 ( 1

2 −ρ +4σ)a2], for a2 = aμαaμα, where gμν and
its inverse gμν are used to raise and lower indices. Following a N-adapted calculus with “N-
elongated” partial differential and differential operators (see (10) and (11)) instead of usual
partial derivatives and local coordinate (co) bases, similarly to constructions in Appendix to
[1], we get from (40) (up to the second order approximations on a) the effective Lagrangian

L = √−g

[
sR + 2� − 1

12
H2 +

(
1

4
μ2 + β sR

)
a2

− αRμνaμαa ν
α − γ Rμανβaμνaαβ

]
+ O(a3), (43)

where the effective gauge field (absolutely symmetric torsion) is

Hαβγ = eαaβγ + eβaγ α + eγ aαβ, (44)

with an effective mass for aβγ , μ2 = 2�(1 − 2ρ + 8σ),when the curvature d-tensor Rμανβ,

Ricci d-tensor Rμν and scalar curvature sR are correspondingly computed following formu-
las (A.2) and (28), and the constants from (40) and (42) are re-defined following formulas
(A.4) in Appendix.
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If in the effective Lagrangian (43) we take instead of a metric compatible d-connection

α

βγ the Levi–Civita connection�

α
βγ , we get the formula (A29) in [31] for nonsymmetric

gravitational interactions modelled on a (pseudo) Riemannian background. It exists a theo-
rem proven by van Nieuwenhuizen [46] stating that in flat space the only consistent action
for a massive antisymmetric tensor field is of the form

f l L = − 1

12
H2 + 1

4
μ2a2 + O(a3), (45)

for a2 = aμνaμν. A rigorous study provided in [31] proves that γ = 0, see (43), is not allowed
in nonsymmetric gravity theories extended nearly a Schwarzschild background because in
such a case it is not possible to solve in a compatible form the conditions (A.5) for γ =
� = 0.

A quite general solution of the problem of instability in nonsymmetric gravity theories
found by Janssen and Prokopec is to compensate the term with γ �= 0 in (43). To do this, we
can constrain such a way the nonholonomic frame dynamics8 when we get for decomposi-
tions of a noncommutative gravity theory with respect to any general relativity background
an effective Lagrangian without coupling of spacetime curvature tensors with nonsymmetric
tensor bμα (i.e. without a term of type γ �Rμανβbμνbαβ),

E L = √−g

[
�R + 2 �� − 1

12
H2 +

(
1

4
μ2 + β �R

)
b2 − α�Rμνbμαb ν

α

]
+ O(b3). (46)

In this formula �R and �Rμν are respectively the scalar curvature and the Ricci tensor com-
puted for �


α
βγ and �� is an effective cosmological constant with possible small polariza-

tions depending on uα.

We show how for a class of nonholonomic deformations of general relativity back-
grounds, we get effective Lagrangians which seem to have a good flat spacetime limit of
type (45):

Let us consider Na
i ≈ ε̊2 na

i and aμα ≈ ε̊ bμα and take b
α
βγ = 
̂

γ

αβ (39) in decomposition
for d-connection (41), where ε̊ is a small parameter, which results (following formulas (29),
(44) and (10)) in deformations of type

�

γ

αβ = 
̂
γ

αβ + ε̊2
�z̊

γ

αβ(na
i ) . . . ,

(47)
sR = �R + ε̊2

�z̊(n
a
i ) . . . ,H2 = ε̊2

�H(bμα),

where �H(bμα) is computed by formula (44) with eα → ∂α and aβγ → bβγ and the function-
als �z

γ

αβ(gij,gab, n
a
i ) and �z̊(gij,gab, n

a
i ) can be computed by introducing (A.3) into respective

formulas for connections and scalar curvature. Introducing values (47) into (45) and identi-
fying �� ≈ �, we get that L → E L if and only if

�z(gij,gab, n̊
a
i ) = γ �Rμανβbμνbαβ . (48)

The left part of this equation is defined by the quadratic ε̊2 deformation of scalar curva-
ture, from �R to sR, relating algebraically the coefficients gij , hab and na

i and their partial
derivatives. We do not provide in this work the cumbersome formula for �z̊(gij,gab, n

a
i ) in

8In explicit form, we have to impose certain constraints on coefficients Na
i

from (34) and (33), see the end
of this section.
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the case of general nonholonomic or Einstein gravity backgrounds, but we shall compute it
explicitly and solve (48) for an ellipsoidal background in next section. Here we emphasize
that in theories with zero cosmological constant we have to consider �� ≈ � = 0.

We conclude that we are able to generate stable nonsymmetric gravity models on back-
grounds with small nonholonomic frame and nonsymmetric metric deformations if the con-
ditions (48) are satisfied. This induces a small locally anisotropic polarization of the cos-
mological constant. Having stabilized the gravitational interactions with the nonsymmetric
components of metric, for certain gravitational configurations with another small parameter
ε → 0, we get certain backgrounds in general relativity (for instance, the Schwarzschild
one). For generic nonlinear theories, such as nonsymmetric gravity theories and the Ein-
stein gravity, the procedures of constraining certain nonlinear solutions in order to get stable
configurations and taking smooth limits on a small parameter resulting in holonomic back-
grounds are not commutative.

Finally, we note that we can use similar decompositions of type (47) to transform an
arbitrary metric compatible d-connection 


γ

αβ to 
̂
γ

αβ, and/or to introduce two small para-
meters for deformations of type 


γ

αβ → 
̂
γ

αβ → �

γ

αβ. We shall use this approach in the
next section.

4 Stability of Stationary Ellipsoidal Solutions

The effective gravitational field equations for nonsymmetric metrics on symmetric nonholo-
nomic backgrounds are derived. We also analyze a class of solutions in nonsymmetric grav-
ity theories on a nonholonomic ellipsoidal background. For vanishing eccentricity, such so-
lutions have nontrivial limits to Schwarzschild configurations.

4.1 Field Equations with Nonholonomic Backgrounds

The field equations derived from an effective Lagrangian (43) for a d-connection 

γ

αβ are

(√|gμν |
)−1

eα(
√|gμν |Hαβν) + (μ2 + 4β sR)aβν

+ 4αaα(νRβ)
α + 4γ aατ Rβ ν

ατ + O(a2) = 0,

Rμν − 1

2
gμν

sR − �gμν + O(a2) = 0.

We shall work with two-parameter, deformations of nonlinear and linear connections, re-
spectively of Na

i ≈ εna
i + ε̊2n̊a

i + . . . and aμα ≈ ε̊bμα and


̂
γ

αβ = 

γ

αβ + ε̊2 z̊
γ

αβ(n̊a
i ) + . . . , �


γ

αβ = 
̂
γ

αβ + ε �z
γ

αβ(na
i ) . . . ,

sR = s R̂ + ε̊2 z̊(gij,gab, n
a
i ) . . . , H2 = ε̊2H̊(bμα),

sR̂ = �R + ε �z(gij,gab, n
a
i ) + . . . ,

where

� ≈ ε̊2�̊, (49)
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we transform L (43) into

L̊ =√−g

[
s R̂ + 2�̊ − H̊2

12
+

(
μ2

4
+ β sR̂

)
b2 − α R̂μνbμαb ν

α

]
+ O(b3) (50)

if and only if

z̊(gij,gab, n
a
i ) = γ R̂μανβbμνbαβ . (51)

The N-adapted variational field equations derived from (50) are

eα(
√|gμν |H̊αβν)√|gμν |

+ (μ2 + 4β sR̂)bβν + 4αbα(νR̂β)
α + O(b2) = 0, (52)

R̂μν − 1

2
gμν

sR̂ − ε̊2�̊gμν + O(b2) = 0, (53)

where R̂β
ατν , R̂μν and s R̂ are computed respectively by introducing the coefficients (39) into

formulas (A.2) and (28). We can see that to the order O(b2) the fields equations decouple
on the symmetric and nonsymmetric parts of d-metrics which allows us to consider a non-
holonomic symmetric background defined by (gμν,N

a
i , 
̂

γ

αβ) and to reduce the problem to
the study of constrained dynamics of the antisymmetric d-field aβν on this background.

4.2 Solutions with Ellipsoidal Symmetry

The simplest class of solutions for the system (52) and (53) can be constructed in the ap-
proximation that ε̊2�̊ ∼ 0 and μ2 ∼ 0.9 For the ansatz

H̊αβν = bλ
√|gμν |εαβν, (54)

where bλ = const and εαβν being the complete antisymmetric tensor, and any (vacuum)
solution for

R̂μν = 0, (55)

we generate decoupled solutions both for the symmetric and nonsymmetric part of metric.
The nonsymmetric field bβγ is any solution of

bλ
√|gμν |εαβν = eαbβγ + eβbγ α + eγ bαβ, (56)

which follows from formulas (44) and (54).

4.2.1 Anholonomic Deformations of the Schwarzschild Metric

Let us consider a primary quadratic element

δs2
[1] = −dξ 2 − r2(ξ) dϑ2 − r2(ξ) sin2 ϑ dϕ2 + � 2(ξ) dt2, (57)

9As a matter of principle, we can consider solutions with nonzero values of mass μ, but this will result in more
sophisticate configurations for the nonsymmetric components of metrics which is not related to the problem
of nonholonomic stabilization of noncommutative gravity theories, see Chap. 3 in [40], for similar details on
constructing static black ellipsoid solutions in gravity with nonholonomic completely antisymmetric metric
defined as a Proca field, and [43], for complex generalizations of such solutions to noncommutative gravity.
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where the local coordinates and nontrivial metric coefficients are parametrized in the form

ǧ1 = −1, ǧ2 = −r2(ξ), ȟ3 = −r2(ξ) sin2 ϑ, ȟ4 = � 2(ξ), (58)

for ξ = ∫
dr |1 − 2m0

r
+ ε

r2 |1/2 and � 2(r) = 1 − 2m0
r

+ ε

r2 and x1 = ξ, x2 = ϑ,y3 = ϕ,

y4 = t . For parameters ε → 0 and m0 being a point mass, the element (57) defines the
Schwarzschild solution written in spacetime spherical coordinates (r,ϑ,ϕ, t). The parame-
ter ε should not be confused with the square of the electric charge e2 for the Reissner–
Nordström metric. In our further considerations, we treat ε as a small parameter, for instance,
defining a small deformation of a circle into an ellipse (eccentricity).

We construct a generic off-diagonal vacuum solution10 by using nonholonomic deforma-
tions, gi = ηi ǧi and ha = ηaȟa, where (ǧi , ȟa) are given by data (58), when the new ansatz
(target metric),

δs2
[def] = −η1(ξ)dξ 2 − η2(ξ)r2(ξ) dϑ2

−η3(ξ,ϑ,ϕ)r2(ξ) sin2 ϑ δϕ2 + η4(ξ,ϑ,ϕ)� 2(ξ) δt2,
(59)

δϕ = dϕ + w1(ξ,ϑ,ϕ)dξ + w2(ξ,ϑ,ϕ)dϑ,

δt = dt + n1(ξ,ϑ)dξ + n2(ξ,ϑ)dϑ,

is supposed to solve (55). In formulas (59) there are used 3D spacial spherical coordinates,
(ξ(r),ϑ,ϕ) or (r,ϑ,ϕ). The details on determining certain classes of coefficients for the
target metric solving the vacuum Einstein equations for the canonical d-connection can be
found in [2, 5, 41, 43] and Part II in [40]. Here we summarize the results which can be
verified by direct computations:

The functions η3 and η4 can be generated by a function b(ξ,ϑ,ϕ) following conditions
−h2

0(b
∗)2 = η3(ξ,ϑ,ϕ)r2(ξ) sin2 ϑ and b2 = η4(ξ,ϑ,ϕ)� 2(ξ), for

|η3| = (h0)
2|ȟ4/ȟ3|

[(√|η4|
)∗]2

, (60)

with h0 = const, where ȟa are stated by the Schwarzschild solution for the chosen system
of coordinates and η4 can be any function satisfying the condition η∗

4 = ∂η4/∂ϕ �= 0. We

can compute the polarizations η1 and η2, when η1 = η2r
2 = eψ(ξ,ϑ) with ψ solving ∂2ψ

∂ξ2 +
∂2ψ

∂ϑ2 = 0. The nontrivial values of N-connection coefficients N3
i = wi(ξ,ϑ,ϕ) and N4

i =
ni(ξ,ϑ,ϕ), when i = 1,2, for vacuum configurations with the Levi–Civita connection ∇
are given by

w1 = ∂ξ (
√|η4|�)/

(√|η4|
)∗

�, w2 = ∂ϑ(
√|η4|)/

(√|η4|
)∗

and any n1,2 = 1n1,2(ξ,ϑ) for which ∂ϑ(1n1) − ∂ξ (
1n2) = 0, when, for instance ∂ξ = ∂/∂ξ.

In a more general case, when ∇ �= D̂, but the nonholonomic vacuum equation (55) is solved,
we have to take

n1,2(ξ,ϑ,ϕ) = 1n1,2(ξ,ϑ) + 2n1,2(ξ,ϑ)

∫
dϕ h3/

(√|h4|
)3

,

10It can not diagonalized by coordinate transforms.
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for 1n1,2(ξ,ϑ) and 2n1,2(ξ,ϑ) being certain integration functions to be defined from certain
boundary conditions, or constrained additionally to solve certain compatibility equations in
some limits.

Putting the defined values of the coefficients in the ansatz (59), we construct a class of
exact vacuum solutions of the Einstein equations for the canonical d-connection (in partic-
ular, for the Levi–Civita connection) defining stationary nonholonomic deformations of the
Schwarzschild metric,

δs2
[1] = −eψ

(
dξ 2 + dϑ2

) − h2
0

[(√|η4|
)∗]2

� 2 δϕ2 + η4�
2 δt2,

(61)

δϕ = dϕ + ∂ξ (
√|η4|�)

(
√|η4|)∗�

dξ + ∂ϑ(
√|η4|)

(
√|η4|)∗ dϑ, δt = dt + n1dξ + n2dϑ.

Such solutions were constructed to define anholonomic transform of a static black hole so-
lution into stationary vacuum Einstein (non)holonomic spaces with local anisotropy (on co-
ordinate ϕ) defined by an arbitrary function η4(ξ,ϑ,ϕ) with ∂ϕη4 �= 0, an arbitrary ψ(ξ,ϑ)

solving the 2D Laplace equation and certain integration functions 1n1,2(ξ,ϑ) and integration
constant h2

0. In general, the solutions from the target set of metrics do not define black holes
and do not describe obvious physical situations. Nevertheless, they preserve the singular
character of the coefficient � 2 vanishing on the horizon of a Schwarzschild black hole if we
take only smooth integration functions. We can also consider a prescribed physical situation
when, for instance, η4 mimics 3D, or 2D, solitonic polarizations on coordinates ξ,ϑ,ϕ, or
on ξ,ϕ, see [2, 5, 43].

4.2.2 Solutions with Small Nonholonomic Polarizations

The class of solutions (65) is defined in a very general form. Let us extract a subclasses
of solutions related to the Schwarzschild metric. We consider decompositions on a small
parameter 0 < ε < 1 in (61), when

√|η3| = q 0̂
3 (ξ,ϑ,ϕ) + εq 1̂

3 (ξ,ϑ,ϕ) + ε2q 2̂
3 (ξ,ϑ,ϕ) . . . ,√|η4| = 1 + εq 1̂

4 (ξ,ϑ,ϕ) + ε2q 2̂
4 (ξ,ϑ,ϕ) . . . ,

where the “hat” indices label the coefficients multiplied to ε, ε2, . . . . The conditions (60) are

expressed: εh0

√
| ȟ4
ȟ3

|(q 1̂
4 )∗ = q 0̂

3 , ε2h0

√
| ȟ4
ȟ3

| (q 2̂
4 )∗ = εq 1̂

3 , . . . . We take the integration con-

stant, for instance, to satisfy the condition εh0 = 1 (choosing a corresponding distributions
and system of coordinates). This condition will be important in order to get stable solutions
for certain ε �= 0, but small, i.e. 0 < ε < 1. For such small deformations, we prescribe a func-
tion q 0̂

3 and define q 1̂
4 , integrating on ϕ (or inversely, prescribing q 1̂

4 , then taking the partial

derivative ∂ϕ, to compute q 0̂
3 ). In a similar form, there are related the coefficients q 1̂

3 and q 2̂
3 .

An important physical situation arises when we select the conditions when such small non-
holonomic deformations define rotoid configurations. This is possible, for instance, if

2q 1̂
4 = q0(r)

4m2
0

sin(ω0ϕ + ϕ0) − 1

r2
, (62)
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where ω0 and ϕ0 are constants and the function q0(r) has to be defined by fixing certain
boundary conditions for polarizations. In this case, the coefficient before δt2 is

η4�
2 = 1 − 2m0

r
+ ε

(
1

r2
+ 2q 1̂

4

)
. (63)

This coefficient vanishes and defines a small deformation of the Schwarzschild spherical
horizon into a an ellipsoidal one (rotoid configuration) given by r+ � 2μ

1+ε
q0(r)

4m2
0

sin(ω0ϕ+ϕ0)
.

Such solutions with ellipsoid symmetry seem to define static black ellipsoids which are sta-
ble (they were investigated in details in [41, 42]). The ellipsoid configurations were proven
to be stable under perturbations and transform into the Schwarzschild solution far away from
the ellipsoidal horizon. In general relativity, this class of vacuum metrics violates the condi-
tions of black hole uniqueness theorems [47] because the “surface” gravity is not constant
for stationary black ellipsoid deformations.

We can construct an infinite number of ellipsoidal locally anisotropic black hole defor-
mations. Nevertheless, they present physical interest because they preserve the spherical
topology, have the Minkowski asymptotic and the deformations can be associated to cer-
tain classes of geometric spacetime distorsions related to generic off-diagonal metric terms.
Putting ϕ0 = 0, in the limit ω0 → 0, we get q 1̂

4 → 0 in (62). To get a smooth limit to the

Schwarzschild solution we have to state the limit q 0̂
3 → 1 for ε → 0.

Let us summarize the above presented approximations for ellipsoidal symmetries: For
(63), we have

h4 = η4(ξ,ϑ,ϕ)� 2(ξ) = 1 − 2m0

r
+ ε

q0(r)

4m0
sin(ω0ϕ + ϕ0) + O(ε2),

h3 = η3(ξ,ϑ,ϕ)r2(ξ) sin2 ϑ = h2
0[(

√|η4|)∗]2� 2(ξ) = (εh0)
2[(q 1̂

4 )∗]2,

which results in h3 = (εh0)
2 q0(r)ω2

0
16m0

cos2(ω0ϕ + ϕ0) + O(ε3), where we must preserve the

second order on ε2 if εh0 ∼ 1. To get a smooth limit of off-diagonal coefficients in solu-
tions to the Schwarzschild metric (57), we state that after integrations one approximates
the N-connection coefficients as Na

i ∼ εna
i . Putting together all decompositions of coeffi-

cients on ε in (61), we get a family of ellipsoidal solution of equations (55) decomposed on
eccentricity ε,

δs2
[1] = −eεψ

(
dξ 2 + dϑ2

) − (εh0)
2 q0(r)ω

2
0

16m0
cos2(ω0ϕ + ϕ0)δϕ

2

+
[

1 − 2m0

r
+ ε

q0(r)

4m0
sin(ω0ϕ + ϕ0) + O(ε2)

]
δt2, (64)

δϕ = dϕ + ε
∂ξ (

√|η4|�)

(
√|η4|)∗�

dξ + ε
∂ϑ(

√|η4|)
(
√|η4|)∗ dϑ, δt = dt + εn1dξ + εn2dϑ.

One can be defined certain more special cases when q 2̂
4 and q 1̂

3 (as a consequence) are
of solitonic locally anisotropic nature. In result, such solutions will define small station-
ary deformations of the Schwarzschild solution embedded into a background polarized by
anisotropic solitonic waves.

Now, we show how we can solve the problem of stability related to the condition (51):
Let us consider a small cosmological constant of type (49) stated only in the horizontal
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spacetime distribution h� ≈ ε̊2 h�̊, but v� = 0.11 By straightforward computations, we
can verify that the symmetric part of the ansatz

δs2
[1] = −eεψ+ε̊2ψ̊

(
dξ 2 + dϑ2

) − (εh0)
2 q0(r)ω

2
0

16m0
cos2(ω0ϕ + ϕ0) δϕ2

+
[

1 − 2m0

r
+ ε

q0(r)

4m0
sin(ω0ϕ + ϕ0) + O(ε2)

]
δt2 + ε̊bαβ eα ∧ eβ,

(65)

δϕ = dϕ + ε
∂ξ (

√|η4|�)

(
√|η4|)∗�

dξ + ε
∂ϑ(

√|η4|)
(
√|η4|)∗ dϑ,

δt = dt + εn1dξ + εn2dϑ.

solves the equations

Rij = R̂ij + ε̊2z̊ij , for z̊ij = − h�̊eεψ+ε̊2ψ̊ δij , R̂ij = 0
(66)

Ria = R̂ia = 0, Rai = R̂ai = 0, Rab = R̂ab = 0,

where eα = (dξ, dϑ, δϕ, δt), ψ̊ is the solution of ∂2ψ̊

∂ξ2 + ∂2ψ̊

∂ϑ2 = h�̊. If the nonsymmetric part
of (65) is with bαβ being a solution of (56), the rest of coefficients are constrained to satisfy
above mentioned conditions, we generate a class of both nonholonomic and nonsymmetric
metric deformations of the Schwarzschild metric which defines a family of two parametric
nonholonomic solutions in noncommutative gravity theories (when the gravitational field
equations are approximated by (52) and (52)). The stability conditions (51) result in z̊ =
gij z̊ij (gij,gab, , n

a
i ) = h�̊ = γ R̂μανβbμνbαβ . This imposes a constraint of the generating

function q 1̂
4 (ξ,ϑ,ϕ) and integration functions and constants, of type q0(r) and 1ni(ξ,ϑ) and

2ni(ξ,ϑ), which selects of subspace in the integral variety of solutions of (66). We have
z̊ = 0 and R̂μανβ, for any nonzero γ, in the case of teleparallel nonholonomic manifolds,
see Chap. 1 in [40] (we note that for such configurations the Riemann curvature for the
Levi–Civita connection, in general, is not zero).

We conclude that the presence of a small cosmological constant h� ≈ ε̊2 h�̊ may stabi-
lize additionally the solutions but stability can be obtained also for vanishing cosmological
constants. Constructing such solutions we considered, for simplicity, that the mass of ef-
fective gauge fields is very small. In a more general case, we can generate nonsymmetric
metrics with effective Proca fields with nonzero mass and nonzero cosmological constants,
see more sophisticate constructions in [39, 40, 43].

5 Conclusions and Discussion

In this article we developed a new method of stabilization in nonsymmetric gravity theories
and spacetimes provided with nonholonomic distributions and canonically induced anholo-
nomic frames with associated nonlinear connection (N-connection) structures. For general
effective Lagrangians modelling nonsymmetric gravity theories on (non) holonomic back-
grounds, we shown how to construct stable and nonstable solutions. We argued that the

11The techniques presented in [2, 5, 40, 41] allows us to construct solutions for nontrivial values v�, but this
would result in modifications of the formulas for the vertical part of d-metric and N-connection coefficients,
which is related to a more cumbersome calculus; in this work, we analyze the simplest examples.
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corresponding systems of field equations possess different types of gauge like and nonholo-
nomically deformed symmetries which may stabilize, or inversely, evolve into instabilities
which depends on the type of imposed constrains and ansatz for the symmetric and nonsym-
metric components of metric and related N-connection and linear connection structures.

The N-connection geometry and the formalism of parametric nonholonomic frame trans-
forms are the key prerequisites of the so-called anholonomic frame method of construct-
ing exact and approximate solutions in Einstein gravity and various generalizations to
(non)symmetric metrics, metric-affine, noncommutative, string like and Lagrange–Finsler
gravity models, see reviews and explicit examples in [5, 39, 40, 43]. Such geometric meth-
ods allow us to generate very general classes of solutions of nonlinear field and constraints
equations, depending on three and four variables and on infinite number of parameters, and
solve certain stability problems in various models of gravity. For simplicity, in this paper
we consider the nonholonomic stabilization method for a class of solutions with ellipsoidal
symmetries which transform into the Schwarzschild background for small eccentricities and
small nonsymmetry (of metrics) parameters.

The idea to use Lagrange multipliers and dynamical constraints proposed and elaborated
in [38], in order to solve instabilities discovered in nonsymmetric gravity theory by Clayton
[35, 36], contains already a strong connection to the nonholonomic geometry and field dy-
namics. This work develops that dynamical constraint direction to the case of nonholonomic
parametric deformations following certain results from [1, 2] (on the geometry of gener-
alized spaces and Ricci flows constrained to result in nonholonomic and (non)symmetric
structures). This way we can solve the Janssen–Prokopec stability problem in nonsymmet-
ric gravity theory [31–33] and develop a new (nonholonomic) direction in (non) symmetric
gravity and related spacetime geometry. Here we also note that nonsymmetric components
of metrics arise naturally as generalized almost symplectic structures in deformation quan-
tization of gravity [4, 13] when corresponding almost Kähler models are elaborated for
quantum models. It was proved how general relativity can be represented equivalently in
nonsymmetric almost symplectic variables for a canonical model on a corresponding almost
Kähler spaces. For such a model of “nonsymmetric” gravity/general relativity, the questions
on stability of solutions is to be analyzed as in general relativity, together with additional
considerations for nonholonomic constraints.

Following the above-mentioned results, we have to conclude that nonsymmetric metrics
and connections are defined naturally from very general constructions in modern geometry,
nonlinear functional analysis and theoretical methods in gravity and particle physics. Such
nonsymmetric generalizations of classical and quantum gravity models can not be prohib-
ited by some examples when a gauge symmetry or stability scenaria fail to be obtained for
a fixed flat or curved background like in [31–36]. It is almost sure that certain nonlinear
mathematical techniques always can be provided in order to construct stable, or un-stable,
solutions, with evolutions of necessary type; as well one can be elaborated well defined
physical scenaria and alternatives. This is typical for generic nonlinear theories like general
relativity and nonsymmetric gravity theories.

Of course, there exists the so-called generality problem in nonsymmetric gravity theo-
ries when a guiding principle has to be formulated in order to select from nine and more
constants and extra terms in generalized Lagrangians (at least by 11 undetermined para-
meters come from the full theory and the decomposition of the metric tensor). It may be
that (non)symmetric corrections to metrics and connections can be derived following cer-
tain geometric principles in Ricci flow and/or deformation quantization theories, not only
from the variational principle for generalized field interactions and imposed nonholonomic
constraints. One also has to be exploited intensively certain variants of selection from dif-
ferent theories following existing and further experimental data like in [25–27, 33], see also
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references therein. At this moment, there are none theoretical and experimental prohibitions
for nonsymmetric metrics which would be established in modern cosmology, astrophysics
and experimental particle physics.
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Institutes. The author is grateful to referees for hard work and suggested important modifications.

Appendix: Some Component Formulas and Redefinition of Constants

The N-adapted coefficients of torsion is computed in the form

T α � Deα = deα + 
α
β ∧ eβ,

for T i
jk = Li

jk − Li
kj , T i

ja = Ci
ja, T a

ji = �a
ji, (A.1)

T a
bi = ∂Na

i

∂yb
− La

bi, T a
bc = Ca

bc − Ca
cb,

where �a
ji is the curvature of N-connection (13). We cite articles [1, 5] for reviews of results

and more details.
By a straightforward d-form calculus, we can find the N-adapted components of the cur-

vature of a d-connection D,

Rα
β � D
α

β = d
α
β − 


γ

β ∧ 
α
γ = Rα

βγ δeγ ∧ eδ,

i.e. the d-curvature,

Ri
hjk = ek

(
Li

hj

) − ej

(
Li

hk

) + Lm
hjL

i
mk − Lm

hkL
i
mj − Ci

ha�
a
kj ,

Ra
bjk = ek

(
La

bj

) − ej

(
La

bk

) + Lc
bjL

a
ck − Lc

bkL
a
cj − Ca

bc�
c
kj ,

Ri
jka = eaL

i
jk − DkC

i
ja + Ci

jbT
b
ka,

(A.2)
Rc

bka = eaL
c
bk − DkC

c
ba + Cc

bdT
c
ka,

Ri
jbc = ecC

i
jb − ebC

i
jc + Ch

jbC
i
hc − Ch

jcC
i
hb,

Ra
bcd = edC

a
bc − ecC

a
bd + Ce

bcC
a
ed − Ce

bdC
a
ec.

Contracting the first and forth indices Rβγ = Rα
βγα , one gets the N-adapted coefficients

for the Ricci tensor Ric � {Rβγ = (Rij ,Ria,Rai,Rab)}. See explicit formulas in [39]. It
should be noted here that for general d-connections the Ricci tensor is not symmetric, i.e.
Rβγ �= Rγβ .

Finally, we note that there are two scalar curvatures, sR and s Ř, of a d-connection defined
by formulas sR = gβγ Rβγ and s Ř = ǧβγ Rβγ . Both geometric objects can be considered in
generalized gravity theories.

Similar formulas holds true, for instance, for the Levi–Civita linear connection 
 =
{ �


α
βγ } is uniquely defined by the symmetric metric structure (34) by the conditions � T = 0

and 
g = 0. It should be noted that this connection is not adapted to the distribution (8)
because it does not preserve under parallelism the h- and v-distribution. Any geometric con-
struction for the canonical d-connection, D̂ = {�


γ

αβ}, can be re-defined for the Levi–Civita
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connection, 
̂
γ

αβ, using formula �

γ

αβ = 
̂
γ

αβ + �Z
γ

αβ, where distorsion tensor �Z
γ

αβ is de-
fined by N-adapted coefficients

�Z
i
jk = 0, �Z

a
jk = −Ci

jbgikh
ab − 1

2
�a

jk, �Z
i
bk = 1

2
�c

jkhcbg
ji − �ih

jk C
j

hb,

�Z
a
bk = +�ab

cd
◦Lc

bk, �Z
i
kb = 1

2
�a

jkhcbg
ji + �ih

jk C
j

hb,

(A.3)

�Z
a
jb = − −�ad

cb
◦Lc

dj , �Z
a
bc = 0, �Z

i
ab = −gij

2

[◦Lc
ajhcb + ◦Lc

bjhca

]
,

�ih
jk = 1

2
(δi

j δ
h
k − gjkg

ih), ±�ab
cd = 1

2
(δa

c δ
b
d + hcdh

ab),

for ◦Lc
aj = Lc

aj − ea(N
c
j ). Both d-connections and d-tensor are determined by the

generic off-diagonal metric (34), or (equivalently) by d-metric (33) and the coefficients of
N-connection (9) [39]. If we work with nonholonomic constraints on the dynamics/geometry
of gravity fields, it is more convenient to use a N-adapted approach. For other purposes, it is
preferred to use only the Levi–Civita connection.

In order to get a convenient form of effective Lagrangian, the constants from (40) and
(42) are re-defined in the form:

α = ρ + � − 1, β = 1

2

(
1

2
− ρ + 2σ

)
,

γ = � = 3�2θ2 [2(c1 + c3) + 1 − b2] + �2

[
d − b2

3
+ 2

3
(c1 + c3) − 3

8
L

2

]

(A.4)

+ �{2
[
θ(1 + b1) − 2

3
− 8a1

3
+ a2

2
− b1

3
−

(
a1 + 1

2

)
L

2

2

]

− θ(φ − ξ) [4(c1 + c3) − 2b2 + 2]}
for

� = 3a2/2 − b1 − 8a1 − 2

b2 − 2(c1 + c3) − 3d1
, L =2

3

(1 + 2a1)[b2 − 3d1 − 2(c1 + c3)]
2 + 8a1 − 3

2a2 − b1

K = 3(a1 − a2/4)

(1 + 2a1)
L+d1 − b2

3
+ 2

3
(c1 + c3), θ ≡ 2K + L

A − B
,

ξ ≡ (A + 3B)(b1 + 1)

A2 + AB − B2 , φ = ψ = (A + B)(b1 + 1)

A2 + AB − B2 ,

A = 2(1 − b2 + c1 + c2), B = −2(c1 + c3),

� = (b2 − 1)(ξ − φ)2 + 2φ(1 + b1), � = 1

3
(φ2 + 2ξφ)(b2 + c1 + c3 − 1)2,

� = (c1 + c3)(ξ − φ)2 + ξ(1 + b1),

where the conditions

� + 3� = −1

4
and � = � − 2� (A.5)

have to be imposed in order to get a stable effective Lagrangian in the flat space limit.
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